Home » Posts tagged 'renewables'

Tag Archives: renewables

Opium: The unlikely poster child for renewable energy

On 27 July 2020, Justin Rowlatt, Chief Environmental Correspondent of BBC News, published an article with the headline: What the heroin industry can teach us about solar power.

I missed that, but a month later found it reported in an issue of Zac and Jesse’s amusing and informative blog called “Now You Know.” about issues related to electromobility and renewable energy. This particular episode of the blog was called: Solar Panels: Proof is in the Poppies where they highlighted the findings reported by Justin Rowlatt.

Solar Panels for sale in Afghanistan: stacked three stories high. Image courtesy BBC News

So what’s the story here?

In 2013, the first Afghan farmer used solar panels to power a pump that brought water up to the surface from 100 meters below ground. Prior to that, his only alternative had been diesel pumps. Pumps ran on dirty diesel that fouled his motors and caused frequent breakdowns, in addition to intermittent supply. Running on solar power was clean and free, the pumps worked reliably, and the farmer was able to grow 2 or even 3 crops a year, in addition to increased yields per crop. The following year, a few panels were available for sale in local markets. Since then, the sale of solar panels has taken off in the province, with 67,000 arrays counted in Helmand Valley alone in 2019. The negative effect of this bounty is that opium output has more than doubled in the intervening years.

If only we could see that kind of exponential growth of renewables in rich countries, the world’s environmental outlook would not be the bleak picture it is today. But there is a surprising amount of misinformation in the educated, industrialised world. This is partly due to the existence of powerfully entrenched corporations that jealously guard their own turf and discourage innovation. The second negative factor is the advertising industry that has spent decades fine-tuning their ability to spread the message of their paymasters, however detrimental to the planet. Time to take a leaf from an Afghan farmer’s book on energy, if not for choice of crops.

Reposting from Electrifying: All-Time Highs for Renewables in 2020

As the blog ELECTRIFYING noted this week: Renewable electricity generation has hit all-time highs in the first half of 2020. And this despite the slowdown in utility scale renewables installations as a result of Covid-19. Read more at the link to the original posting below.

Renewables have seen all-time highs in the first half of 2020

What we need to do now (Book Review)

Chris Goodall (environmentalist, economist and businessman) has published a book in 2020 on recommended steps for a zero carbon future. In 12 concise and easily digestible chapters he outlines steps to be taken to achieve (or even exceed) the UN goal of stopping greenhouse gas emissions by 2050. Although specific to the UK, the straightforward proposals in the book could easily serve as a blueprint for any country around the world, regardless of where they stand on the spectrum of greenhouse gas emissions intensity.

The opening chapters deal with green energy generation to power local and regional grids, then move on to housing and transport. The chapters on transport deal with ground, air and shipping transport, three sectors that might need different fuels, depending on technological developments currently in their early stages; battery electric vehicles (BEVs) for ground transportation, hydrogen used with fuel cells for shipping, and liquid synthetic fuels for aviation. There are potential breakthroughs in the offing for each of these solutions and, of course, unforeseen developments in battery technology could mean that energy density is high enough for BEVs to power ships and airplanes as well as cars, buses and trucks. With so much potential waiting in the wings, this is an exciting time for new technologies, despite the looming threat of runaway climate change that can annihilate patterns of living we’ve developed over the past century.

There is a chapter devoted to fashion and its climate impact, as well as one on the carbon footprint of buildings, specifically in concrete production, and fossil fuels in heavy industry. There are known low-carbon solutions here, and the main problem is changing established production norms, the long lifetimes of existing physical infrastructure, and changing the mindset of the large corporations that own these industries.

Food production and forests have great potential to (one) reduce emissions and (two) absorb more CO2 respectively. Finally, it’s the economist’s turn to ask: how will all these changes be paid for? The straightforward answer is through a carbon tax that captures the environmental cost of the fuels used. However, experience has shown that the implementation of this straightforward answer is anything but. There are powerful vested interests to be overcome, not to mention the expense of retraining workers made redundant by obsolete industries.

Two chapters at the end of the book deal with direct air capture of CO2 and geo-engineering solutions. Each of these have their champions, but in my opinion, direct air capture (by industrial means) would never be cost-effective for a simple reason. The technologies that are sophisticated enough to make direct air capture cost-effective would also be good enough to lower emissions to the point where the technology is no longer needed. A sort of negative Catch-22. As for geo-engineering, the scales and money required for this effort would be best spent on researching and implementing technologies that lower emissions in the first place, rather than trying to decrease their effects. Secondly, there are too many unknowns associated with such large scale engineering projects. History is replete with examples of engineering hubris. The second half of the twentieth century saw countless predictions that “science would solve all problems” and “plentiful nuclear energy will provide power that is too cheap to meter.

The final chapter, entitled “What can we do ourselves,” is more important than most people realize. On the one hand, individual actions do count and “little drops make an ocean.” But a second, little regarded effect of “little drops” will be the most important. Whether we live in democracies or dictatorships, ultimately, governments are guided by the cumulative wisdom of the governed. And in any nation where the overwhelming majority of its citizens practice sound environmental stewardship, this mindset will be inexorably transferred to the leadership as well.

We all know that leadership counts. We all realize intuitively that we get the leadership we deserve. So ultimately, logic stands on its head and we are forced to admit that we, the people, are the leaders who have to show our leaders the way.

FOSSIL FUELS ARE FOR DINOSAURS – Aviott John

The Hydrogen Economy

The hydrogen economy may be only a decade away, or more. Some people think that battery electric vehicles will replace combustion engines in the interim. Whatever the case, there are exciting new developments happening in the world of hydrogen. Here’s a shared post from the blog Electrifying entitled Hydrogen – unleash the beast.

 

From Testosterone Economics to Doughnut Economics

I’m currently reading a book by Kate Raworth called “Doughnut Economics.” In it, the author pleads for a rethink of the traditional growth model of an ever-expanding economy to one of equitable development, keeping planetary boundaries in mind, and ensuring redistribution of resources so that the most disadvantaged in society are also looked after.

In the traditional testosterone model (my own term) of economic growth, the rich prosper while the rest of the population benefit from the trickle-down effect of an expanding economy. Trickle down is a euphemism for the rich pissing down on the rest, thus validating the term piss-poor long after the expression came into use. I have examined the disastrous effects of testosterone based decision-making in two earlier blog posts: in 2015 (Golden Skirts vs. Testosterone in the Financial World), and in 2018 (Leadership Hope for a Warming World). Another reflective piece, published on this website in 2018, is related to the topic of the current post (Three Score Years and Ten: Planetary Health and your Lifetime).

Kate Raworth – Doughnut Economics

It’s clear now to all but the most self-absorbed amongst us that we’re already consuming much more than the planet can sustainably provide. If Mother Nature and the earth’s resources were assumed to be a bank account, then we’re no longer living off the interest alone but are drawing down its capital. Since 1971, the Global Footprint Network has calculated Earth Overshoot Day for each year. In the website’s own words:
The Global Footprint Network calculates the number of days of the year that Earth’s bio-capacity suffices to provide for humanity’s ecological footprint. The remainder of the year corresponds to global consumption of Nature’s capital. Earth Overshoot Day is computed by dividing the planet’s bio-capacity (the amount of ecological resources Earth is able to generate that year), by humanity’s ecological footprint (humanity’s demand for that year), and multiplying by 365, the number of days in a year:
(Planet’s Biocapacity / Humanity’s Ecological Footprint) x 365 = Earth Overshoot Day. (EOD)
In 2018, Earth Overshoot Day was calculated to have happened on 1 August. In 2004, the overshoot fell on 1 September! By this calculation, the last time mankind was truly sustainable was in 1969 or 1970 when overshoot day fell in a subsequent year!

Since this planetary over-consumption was first computed in 1971, we have been steadily increasing our ecological debt, and the interest we’re paying on that mounting debt is measured in food shortages, soil erosion, rising temperatures, increasing atmospheric CO2 concentration, biodiversity loss and much, much more. The problem is huge and solutions seem daunting and unreachable to us as individuals. Before we sink into despair, Kate Raworth tells us that there’s plenty we can do as societies to reverse this state of affairs and restore the planet to health. Doughnut Economics, the term she has coined, outlines the solutions that society needs. In the diagram above, the light green space denotes the resources mankind can safely take from the earth while restoring it to health. The dark green lines are the planetary boundaries that have to be respected if we wish to do this. The blue segments are the labels of the various sectors that have to be addressed. The book outlines broad prescriptions to deal with the problems of each of these sectors. In reading through this and other books written in a similar vein, we see that the answer to climate change lies in social change, not in new technologies. Technology alone is useless without the human will to adopt them and to adapt.

So here is the answer to the initial despairing question. What can we do as individuals? There’s plenty one can do. The  EOD website lists hundreds of steps individuals can take to mitigate planetary health. Therein lies our power as individuals. Out of many, one.

Doughnut Economics: Kate Raworth, Random House Business 2018, 384 pp.,

2 Days with a BMW i3

There’s a new car sharing company in town called Caroo mobility (caroo.at). Their selling point: e-cars only, offering a choice of makes and models that are fun to drive and easy to manoeuvre in town. They offered initial longer term rentals to volunteer alpha testers, so I took a BMW i3 for 2 days. The test package included 200 free kilometers per day, so I was looking forward to several test drives around the city and surrounding countryside. Recharging at the local energy utility’s (Wien Energie) 22kW installations was a breeze and took around two hours for a full charge (180 km in winter). The company supplied two different charging cards for the car. A smart phone app, quickly downloaded from a wide range of choices on the app store, showed several hundred charging points in and around the city. I should have remembered Murphy’s Law at this point!

BMW i3

We travelled outside the city on the second day, planning to visit two different towns south and east of Vienna, travelling around 220 km in all. Fully charged, the dashboard showed 180 km range left so we thought, armed with two charging cards, no problem. We’ll charge somewhere along the way. The two phone apps of charging stations, hastily downloaded in the morning, chosen at random from more than a dozen, showed scores of charging stations around the two towns and along the highway. We set off, the car fully charged and showing 180 km of range left on a cold, clear winter morning. By the time we reached the first town, 50 km distant, the screen showed we had 115 km of range left, not bad at all, considering the heating was set to 20C and we drove at modest highway speeds. After our visit in the first town, we had plenty of juice left for the next town, 70 km away. Our apps showed several charging stations at the next town, but we decided to play it safe and top up the charge before heading off. Our real EV learning experience began here.

At the first charging station, run by a different utility, our cards were compatible, but the car did not charge. I called the hot line of the utility and was assured, if the pillar light was green, the charge should work. Green lights all around, no charge! The helpful hotline lady said, sometimes these things are finicky. Try disconnecting and reconnect again. Tried this several times, no luck. So we drove around the outskirts of the first town for an hour, looking for other charging stations. Found another one. The chargers were not Type 2, the ones we needed. By this time our range had come down to 90 km, still enough to make it to the next town. Unsure of what would happen there, we decided to head back to Vienna on the highway, where there are a few charging stations. All of the charge stations were badly marked, so we missed the exits to two. Finally pulled into a giant service station where we found a bank of 6 high speed chargers, labelled 150 kW, 175 kW. The plugs were incompatible with our car. I assumed they were CCS, to allow high power DC fast charging, and was afraid they would fry our batteries even if I could connect. There was one 44kW pillar, where the BMW’s plugs were compatible, but our two charging cards were not valid here. So we ended up driving an extra hour back to Vienna to fully charge the car at one of the city’s charging stations.

So my short summary here. The BMW i3 is beautiful to drive with many well thought out details, some design quirks that don’t really work for me on first use (like the back doors opening backwards), beyond my budget, with the bare bones version starting at around €40,000. So when I buy an electric car later this year, it’s going to be a used Renault Zoe at 25% of the price of an i3, with a monthly rental fee for the battery. A word about the rental fee that begins at around €60 per month; it might sound like an additional financial burden, but remember that battery rental will keep your insurance costs low, since the most expensive component of the car does not have to be insured. Worth keeping in mind when you decide on a purchase plan. And the last word. Before I (or you) buy an EV, download a good app of local charge points and make sure you study the specs, not only of the car, but of charging port requirements with their corresponding charge cards or apps.

Are You Choking on Carbon? #MeToo

I recently read of efforts by a young Swiss duo, both engineers, whose company, Climeworks, sucks CO2 out of the air and carbonates water, injecting the water underground into basaltic rock. To its own surprise, Climeworks finds that the gas converts to solid carbonate forms underground in a couple of years. So is this a stable way to remove greenhouse gases from the air? There are other uses for captured CO2 of course but the quantities are minuscule compared to global emissions. So the pundits talk of capturing the carbon dioxide and storing it in underground caverns or pumping it under pressure into the depths of the ocean. Why isn’t there more talk among technologists of reducing emissions, instead of accepting emissions as a given and figuring out ways of converting them at great cost to benign forms?

A friend recently commented on efforts to remove atmospheric CO2 and store it underground. It’s like swallowing gas, he says. You know what happens when you have too much gas. You either fart or burp, or both. Accumulated internal gas is painful and you wouldn’t do it to yourself, so why do they want to do it to the earth? Do they know what will happen when the earth farts? So why don’t we plant trees instead?

Relative strengths of major greenhouse gases. Image courtesy IPCC

Planting trees is a solution. An average tree sucks up 25 kilos of carbon per year. Humans emit 30 to 40 gigatons of CO2 every year. Let’s say emissions are kept at 30 gigatons a year. Thirty billion tons. That’s… let’s see, forty trees take up one ton per year, so multiply 30 billion by 40… so you get 1,200 billion. That’s 1.2 trillion trees per year just to break even!

How many trees are there on earth already? I found a BBC report of a 2015 Yale University study that estimates the number of trees currently on earth at 3 trillion. That’s 3,000,000,000,000. Since atmospheric CO2 concentrations are going up steadily, the situation would be much worse without these 3 trillion trees. So we still have to suck up the additional 30 gigatons a year, or else reduce emissions. If we take 7 billion to be the global population, leaving aside the old, the infirm and the very young, that leaves around 3 billion people of tree planting age worldwide. In order for 3 billion people to plant 1.2 trillion trees per year, each one will have to plant 400 hundred trees per year.

Persistence of greenhouse gases in the atmosphere. Image courtesy IPCC

Can (and would?) 3 billion people plant 1.2 trillion trees in a year? Of course not. But if even 10% of that number were to plant 10% of the target, we would be well on our way to doing what we need to do. Is this realistic? Quick answer: No. So is there a quick fix? Yes. Eat less meat. Depending on the type of feed, a cow produces 70 to 120 kg. of methane per year. Remember, methane as a greenhouse gas is 23 times more potent than CO2, so cutting down on meat is a quick way to reduce emissions. And it has the added benefit of freeing up pastureland for tree planting. So now we’re beginning to get a handle on things.

If we pump huge quantities of CO2 underground and undersea, the earth might fart (so to speak), with unintended consequences. But cows already fart on an ongoing daily basis, emitting considerable quantities of methane, so eating less meat is a relatively painless quick fix. And then there are lots of concomitant steps that are in the process of hesitantly being implemented, like switching to public transportation and electric cars. And, oh yes, the most environmental step the world is taking is the #MeToo movement! Let’s write that on our foreheads as a reminder to the world. Education and empowerment of women is the fastest way to reduce global greenhouse gas emissions and save our planet.

A Gift to Gaia

The world is full of stuff and many parts of the world are drowning in it. Except for those parts of the world where people don’t have any stuff at all. Nothing to speak of.

Within our family, we stopped giving stuff as gifts quite some time ago. Nowadays, we mark occasions such as birthdays, anniversaries and significant celebrations with the gift of time.

The planet has plenty of time to spare, even though humanity does not. In a few hundred years, or a thousand years, even if mankind has pursued its current illusion of prosperity to oblivion, the planet will sedately roll on, and prosper without us. Just as it prospered long after the last dinosaur ceased to exist.

When Isaac Watts wrote his hymn, based on the 90th Psalm, he was not thinking of humanity’s self-induced annihilation as he composed the following lines.

Time like an ever rolling stream, bears all its sons away
They fly forgotten as a dream, dies at the opening day.

For those ‘successful’ busy people who have no time at all to spare, here’s a suggestion for a gift of stuff that’s actually a gift to the planet and buys us time. This gift has the added benefit of helping people who don’t have much stuff at all. Here’s a link to an Impact Calculator from Solar Aid. With enough gifts like these, perhaps one day we can sit down with Gaia and have the last laugh together.

Image: courtesy greenlightplanet.com

Transportation: The Weight of Fear

Consider me. Or consider yourself. Presumably an average human being of average weight. These averages vary considerably in different parts of the world, from 60 kilos or less, to 90 kilos or more. Looking back at the various means of transport that I have commonly used in the past five decades, I made a list of their approximate weights for comparison. My own weight has changed (increased!) by 5 kilos during this period, from 75 to 80 kg.

Bicycle: Throughout my schooldays, I used a single speed bicycle to take myself (40 to 65 kg.) to school and back. I assume bicycles weighed around 25 kg. in those days. In any case, the means of transportation was around a third of my own body weight. I loved the song of the open road. Most days I arrived at school in a lather of sweat, but no one really bothered about that.

My first job was as a travelling salesman and the most efficient way to do this at the time was with a motorbike or scooter. Traffic congestion was not yet a problem in the 1970s to 90s. I loved the song of the open road. Most days I arrived at work or at a customer feeling dapper and cool, even though a bit windblown. The weight of the motor-scooter or motorbike I owned or rode at various times in this period varied from 130 to 150 kg. My own weight at this time was a svelte 75 kg.

250 cc Jawa 2-stroke motorcycle ca. 1972. Image, coutresy jawa.eu

From the late 70s to the 1990s my preferred mode of transport was a private car. I loved the song of the open road, although traffic was constantly increasing. Loved to drive long distances on holiday. Car weights varied from 840 kg (1976 first generation VW Golf) to 1400 kg (same model 25 years later) to 1700 kg (minivan). In spite of long distance holiday travel with family, 90% of the annual miles were clocked commuting to work and back. i.e. 1000s of kilometers with just one occupant. i.e. using 1400-1700 kg to transport 80 kg of human being. Forget the song of the open road! Most daily commutes were exercises in creeping through congested streets and highways, impatiently waiting to get to work or home.

From the early 2000s onwards, my thinking about the daily commute evolved (?) as follows. Car (1700 kg, 40 minutes), bus (kg irrelevant, 80 minutes), bicycle (16 kg., 70 minutes). The bicycle was definitely a step forward in efficiency and economy. It cost practically nothing, and also gave added health benefits, although I arrived in a lather at work, as I did in my school days, and had to repair to a toilet for a cat-wash and a change of clothes.

Around 2005, I began to yearn for pedal assist on my bicycle and began to look around for electric models. There were none available as far as I could see. Sometime in 2006, I found a German website on the internet that advertised an electric bicycle with a 1 year guarantee, a 7 kilo NiCad battery pack, and no range specifications. I was tired of a steep hill on my daily commute (36 km per day), so I ordered the bike sight unseen and two weeks later, took delivery of a giant cardboard carton with MADE IN CHINA printed on the sides. It weighed 32 kg with battery, had seven gears and was a real pain to carry up and down to the cellar where I stored it overnight.

Image courtesy Pedalandpower.com

But it did the job nicely. The hill was a problem no more. And the range was around 30 km. Unfortunately, NiCad batteries suffer from a memory effect, and I could not charge it in the office for the ride home, so I got minimal assistance on the dreaded hill with a fading battery.

Ah, the perfect solution! Sometime around 2008, I saw a beautiful 24-speed KTM with the cutest little Li-ion battery that was good for 60 kms of pedal-assist riding. By this time, I had moved homes and my daily commute had increased to 50 km. Here was the answer to my commuting problems. The KTM bicycle weighed 22 kg, I weighed 80 kg., and the electricity cost me around €0.30 for 100 km (30 cents). My friends considered the electric bike expensive. It was expensive, in bike terms, but in reality cost about as much as the annual service of the average 1700 kg. monster. Maybe that’s comparing apples and oranges, you say. But such comparisons are ok when you’re riding an apple, and have gotten rid of the orange. Needless to say, I sold the 1700 kg. monster and have lived happily ever after.

Nowadays people tell me, you can’t ride around on a bicycle at your age! It’s too dangerous to ride a bicycle in this murderous city traffic. True. But I wear a helmet and try to ride cautiously. I’m happy carrying my current 79 kg. on two wheels weighing 22 kg., and wouldn’t dream of carrying it in 1700 kg. as I used to do. The difference in weight (ca.1,678 kg) I like to think of as the weight of fear. That’s quite a lot of fear to carry around in one’s life. Best to get rid of it!

 

See this author’s page at Amazon.com to read more of his work

Climate Action Tracker

The Climate Action Tracker posts regular progress reports on how well various countries are doing to adhere to the Paris Agreements. It tracks emissions from 32 selected countries and the list of the good, the bad, and the ugly is quite surprising even to this seasoned watcher.

Only two countries are on track to fulfil the Paris goal, of limiting emissions to keep global temperatures from rising above 1.5 degrees C; Gambia and Morocco.
The second best choice made in Paris was, if not 1.5 degrees, then at the least 2 degrees C. Just 5 of 32 countries meet this target. Bhutan, Costa Rica, Ethiopia, India and Philippines. All of the remaining 25 countries fall into the category of emitters that will lead to a world of 3 degrees warming or more. See the original list here.

Of course this predicator of doom and gloom relies only on official government policies. The reality on the ground may be a bit different in many of the countries on the list. For example, despite their governments, a few cities, power companies and private individuals already find it cheaper to produce unsubsidised renewable energy, a trend that will speed up, just a cell phone sales did in developing country markets worldwide.

See this author’s page on Amazon.com to read more of his work